全国服务热线: 13961410015
企业新闻

农村社区生活污水处理设备

发布时间:2023-12-17        浏览次数:0        返回列表
前言:废水处理解决方案,废水处理
农村社区生活污水处理设备

位于长沙的某高校二级学院某学院拥有矿业工程、矿物加工工程、无机非金属材料工程、生物工程和生物技术四个,该学院拥有两栋科研教学楼,A楼和B楼,其中A楼主要进行矿业工程、矿物加工工程、无机非金属材料工程的科研与教学;B楼主要进行生物工程和生物技术(生物冶金等领域)的科研和教学。A楼和B楼均排放含有重金属、酸碱等污染物的废水,实验室重金属废水需经过处理达到国家排放标准后才能排放。

  1、项目概况

因氰化物仅在A实验楼222实验室使用,氰化物废水在A实验楼222单独收集采用碱性氯化法预处理后,再排入A实验楼废水收集管道,进入废水调节池。本工程在B实验楼南门绿化带内设置了一座废水调节池,在A实验楼广场设置了三座废水调节池,在废水处理站设置了一座总调节池。B实验楼的实验废水由管道输送至废水调节池,再由泵输送至废水处理站的总调节池内;A实验楼的实验室废水由废水收集管道分别收集进入三座废水调节池内,再由设置在调节池内的泵输送至废水处理站的总调节池内。A、B实验楼的实验废水在废水处理站总调节池内进行均质、均量混合。总调节池内的废水经泵提升进入废水处理生产用房内的重金属废水处理机进行处理,重金属处理机包含三个反应区和一个沉淀区。反应区内通过添加硫酸将废水调节至酸性,在酸性环境下通过添加亚硫酸氢钠将六价铬还原为三价铬;第二反应区内通过添加氢氧化钠将废水pH调节至中性,将三价铬、锌等转化为沉淀;第三反应区内添加硫化钠,将废水中的砷、铜、铅、锌、镉、镍、钡、锰、钴、汞等金属离子转化为不溶于水的金属硫化物沉淀,添加CaCl2将废水中的氟离子转化为氟化钙沉淀,添加PAM增强废水的絮凝沉降性能,废水在沉淀区进行固液分离,上清液进入氧化反应器进行氧化反应,去除废水中残余的硫化钠,经氧化反应器处理的废水再经砂滤和活性炭过滤后达标排放。重金属废水处理机产生的化学污泥排入污泥浓缩器浓缩后进入厢式压滤机压滤处理,干泥运输至危险废物处置中心处置,压滤液返回总废水调节池,重新进入废水处理站处理。

  废水处理系统设置了从氧化反应器超越砂滤器、活性炭过滤器的超越管,当废水中污染物浓度低,经重金属废水处理机和氧化反应器处理后出水水质符合排放标准时,可直接超越砂滤器与活性炭过滤器直接达标排放,节约运行成本。

  2.2 主要工艺设备与参数

  (1)总废水调节池。

  1座,有效容积20m3,用于对废水进行水量、水质调节。采用成品玻璃钢材质(耐酸腐蚀),设置于废水处理站旁,配备304不锈钢潜污泵2台(1用1备),规格:Q=6m3/h,H=10m,N=0.75kW。

  (2)重金属废水处理机。

 渤海油田海上平台含油污水处理一般选用斜板隔油器+气浮选+核桃壳滤器+双介质滤器常规四级处理流程,该技术在渤海油田广泛应用。某FPSO设计之初,由于污水处理量大,如按常规四级处理设计,所需要的设备较多,需要平台空间较大,经过比选,选择离心机进行油田含油污水处理。使用过程中,由于上游原油流程改变、冲砂影响等原因,离心机处理效果达不到预期要求。为了在FPSO有限空间的前提下对生产水流程进行相应改造,提高生产水处理效果,进行了旋流气浮一体化技术试验。

  基于低强度旋流离心力场和气浮组合原理,某公司推出紧凑型气浮装置(Compact Flotation Unit,CFU),该装置具有成本低、效率高、易于操作、适应性强等特点。用来分离油、气、水,从而达到生产水处理标准。它不需要额外的能量,同时,CFU也具有更小的体积、质量,跟传统气浮装置相比更小的停留时间等优点。相比于传统分离技术,CFU在更低的花费同时,表现了更高的处理量和更好的性能。

  1、紧凑型气浮装置介绍

了好氧颗粒污泥,并且将其在污水处理过程中进行使用,结果表明,好氧颗粒污泥能够将高浓度的有毒有机物质,以及氮磷含量非常高的污水处理得非常干净,一些重金属和乳制品废水也能达到很好的效果,于是好氧颗粒污泥技术成为环境工程领域内的研究热点和焦点。

  2、好氧颗粒污泥的特点

  好氧颗粒污泥的培养比较困难,受到的条件限制很多,而且不同状况下培养出的好氧颗粒污泥的大小、颜色以及相应的性能都不相同。

  2.1 色泽和颗粒

  好氧颗粒污泥的外形非常有规则,一般为圆形或椭圆形,表面颜色为浅黄色或者橘黄色并且有丰富的孔隙。颗粒污泥的颗粒直径会不断地变大,随着直径的增加,污泥的下沉速度也会跟着加快,污泥的密度和疏水性也会随之加大,这时颗粒污泥的体积是在逐渐减小的。当颗粒污泥的直径超过4㎜之后阻力加大,对微生物的繁殖生长以及多聚物的分泌就会产生影响,终导致颗粒污泥的表皮破裂,逐渐形成絮状活性污泥。所以在应用好氧颗粒污泥技术对化工污水进行处理时必须要掌握好颗粒污泥的颗粒大小和生物活性特征。

  2.2 沉降性能

  好氧颗粒污泥的密度、体积指数以及污泥的沉降比指数综合数值都在佳状态值范围,虽然含水率较高超过了97%,但是并不影响沉降速率,好氧颗粒污泥的沉降速度是絮状污泥沉降速度的5~6倍,所以即便是水力负载很强的环境下依然具有非常高的运行状态和效率。

  2.3 微生物多样性

  颗粒污泥内部形成分为很多的区域,有好氧区、缺氧区和厌氧区,微生物的有氧代谢能降解有机污染物,还可以氧化污水中含有氨氮的物质。氧化后的氨氮成分逐渐扩散到缺氧区和厌氧区,在这里微生物作为电子受体对其进行代谢,从而降低污水中的氮元素。同时颗粒污泥中的含有的微生物能有效地去除污水中的COD、BOD和TN。还能够降低污水池中的污染物体积,从而降低了污水处理厂对占地面积的需求。

  3、好氧颗粒污泥的形成

  培养好氧颗粒污泥受到的条件限制特别多,必须控制好对其产生影响的各类因素,为重要的影响因素有:污泥种泥的来源、反应器、底物成分、有机负荷、进水方式以及污泥沉淀的时间、在水里的剪切力。好氧颗粒污泥培养过程中,影响污泥颗粒化的是种泥的来源、底物成分和SBR,只有控制好这三项影响因素才能保证污泥的颗粒化。通过反复的研究和实践得出,培养好氧颗粒污泥好的种泥是活性污泥。活性污泥中含有大量的微生物群落,这是形成好氧颗粒污泥的重要条件。在排放出来的化工污水中含有的微生物有亲水性的也有疏水性的,亲水性微生物不容易被污泥絮体吸附,因此种泥中含有的疏水性微生物自然是越多越好,好氧颗粒污泥也就更加容易成功的培养出来,其沉降的性能就更强。在培养颗粒污泥的过程中,正二价、三价的离子和带负电的细菌结合之后,形成微生物细胞核。通过这些正负离子结合的方式培养好氧颗粒污泥过程比较繁琐,而且要求的技术水平较高,一定要对各类因素的掌握要恰到好处,一些相关的正、负离子以及时间和器具的掌握必须严格的按照参数操作执行,确保培养出的颗粒污泥的稳定性能。

  4、好氧颗粒污泥的应用

  好氧颗粒污泥应用到化工污水处理中,因为其较强的沉降性能,EPS所具有的耐冲击和耐毒性,通过对微生物原理的利用,微生物的自固定化所具备的可生物添加性,是处理污水的关键。

  4.1 有毒有机废水的处理

  基于好氧颗粒污泥的密度和密实性结构,对有毒物质的抵抗能力非常强,化工污水中会含有大量的微量元素物质,有些是具有一定的毒性的,如苯酚、硝基酚等含有酚类物质的污水,这些酚类对水中的生物具有非常强的毒性,浓度很低的苯酚排放到河流湖泊中都会导致微生物死亡。好氧颗粒污泥应用到含有苯酚物质的污水中,对苯酚的比降解速率是非常高的,即便是苯酚浓度达到每升1900㎎时,仍然能达到降解效果,好氧颗粒污泥对苯酚的比降解速率高可达1.18g苯酚/gVSSd。对硝基酚产生的作用也是一样的。除了含有酚类物质的废水外,好氧颗粒污泥还能有效地处理嘧啶类废水、含有甲基叔丁基醚类元素物质的废水以及三级及甲醇类污水。

  4.2 乳制品废水的处理

  乳制品废水中含有很多营养物质,人们把过多的对污水、废水处理的研究精力都倾注于人工有机污水处理的研究上,而好氧颗粒污泥用于乳制品废水的处理上则开创了新的研究焦点。把好氧颗粒污泥用在乳制品工厂排放的污水当中,当充水比达到50%时,去除COD的概率仍然能够达到90%,对于氮的去除率可以达到80%,总磷达到67%。

  4.3 对重金属燃料废水的处理

  采用生物技术处理污水、废水时会添加一些添加剂来促进生物的吸附能力,常用做生物吸附剂的有藻类、真菌、活性污泥等,目前采用的生物吸附剂多是悬浮微生物,但因为其具有不稳定性、吸附后不容易分离和再生困难等弊端,对重金属废水和染料废水的处理效果不是很好。好氧颗粒污泥则能有效地解决这些问题,强大的吸附能力能够处理高浓度重金属废水,同时对阳离子和染料、荧光剂都有很强的吸附能力。

  4.4 核废料废水的处理

  好氧颗粒污泥作为新型的生物材料可以有效地去除水中溶解性

  1.1 设备结构

  CFU从外形上看是一个圆柱形容器,主要由圆柱容器、圆柱内筒、螺旋导片、水平圆板、切向入口以及油气出口、处理水出口、泥砂出口等组成(见图1)。圆柱内筒在圆柱容器中心同轴中上部,目的是为旋转提供环形旋流空间,同时为水和油气提供通道;螺旋导片是CFU的核心部件,引导含油污水流螺旋流动;水平圆板安装在圆柱容器下方,主要作用是防止涡流并可以起到一定的缓流作用;油气出口位于圆柱容器顶部,油气通过接入罐内的短管排出,

  1套,该设备是废水处理的核心设备。重金属处理机包含三个反应区和一个沉淀区,设计处理能力Q=4.5m3/h,其功能为将废水中的六价铬、锌、铅、镉、镍、锰等金属离子转化为沉淀去除,外形尺寸L×B×H=5.3m×1.5m×4m,包含反应区(化学还原区)、第二

  1.1 废水来源及水量

  废水来源于A楼和B楼,A楼的实验室废水主要来源:清洗污水(包括洗手、清洗设备、清洗容器等)和实验过程中产生的废水。实验过程的废水主要来源包括:浮选、重选和磁选试验;化学分析和湿法浸出试验;贵金属提取过程的含氰化物废液等。废水的pH值、重金属离子、氰化物等成分含量不稳定,直接外排对环境有影响。B楼的实验室废水主要来源:教学实验和科研实验产生的废水,废水水质同样具有不确定性、多变性和复杂性的特点,主要包括高浓度和低浓度的废水,其中,高浓度废水主要为配制的失效或过剩药剂溶液,低浓度废水则主要是化学实验器皿的洗涤水等。废水处理设施的建设场地位于A楼东侧的绿地。A楼和B楼两栋实验大楼的实验室废水排放总量范围为10~35m3/d,A楼与B楼的废水排放量的大致比例约为7︰3。


推荐产品
信息搜索
 
常州天环净化设备有限公司
  • 地址:常州市新北区薛家镇吕墅东路2号
  • 手机:13961410015
  • 联系人:赵双球